29. Studies in Dielectric Polarisation. Part XXI. The Effect of Solvent and Temperature upon the Polarisation and Apparent Moments of Bromides.

By Eric G. Cowley and James R. Partington.
The present paper, which describes measurements on bromobenzene and ethyl bromide, is a continuation of the work reported in Part XX (Cowley and Partington, J., 1936, 1184), in which the influences of the solvent and of the temperature in a particular solvent upon the moments of two nitriles were investigated. Determinations of the polarisations and apparent moments of bromobenzene and ethyl bromide have now been made over a temperature range in six solvents, viz., hexane, cyclohexane, carbon tetrachloride, benzene, toluene, and carbon disulphide. Since the moments of both these bromides have been accurately determined in the vapour state, we have compared vapour values calculated from solution data by the solvent-effect equations with the experimental results for the vapours. These calculations are mentioned in a later part of the paper.

The general conclusions from the present work resemble those deduced from the experiments on the nitriles. We find that all the values of the apparent moments of bromobenzene and ethyl bromide measured in solution are smaller than the vapour values for these compounds and that, within the limit of experimental error, the polarisation values for each compound found at any one temperature in the various solvents fall as the dielectric constant of the solvent increases.

The moments of the bromides have not previously been investigated in a number of solvents under the same conditions. The earlier results are given below :

Bromobenzene : vapour 1.71 (Groves and Sugden, J., 1935, 971); in hexane 1.60 at 25° (Hampson, Trans. Faraday Soc., 1934, 30, Appendix, p. 24) ; in carbon tetrachloride 1.53 (temperature method) (Das and Roy, Indian J. Physics, 1930, 5, 441); in benzene 1.53 at 20° (Tiganik, Z. physikal. Chem., 1931, B, 13, 425), $1 \cdot 70$ (Daily, Physical Rev., 1929, 34, 548), $1 \cdot 55$ at 25° (Le Fèvre and Le Fèvre, J., 1936, 1130).

Ethyl bromide : vapour 2.02 (Smyth and McAlpine, J. Chem. Physics, 1934, 2, 499), 1.99 (Mahanti, Phil. Mag., 1935, 20, 274) ; in hexane 1.86 (temperature method) (Smyth and Morgan, J. Amer. Chem. Soc., 1928, 50, 1547) ; in benzene $2 \cdot 12$ (Daily, loc. cit.). (The values of the moments are expressed here and throughout the paper in Debye units.)

The results of the present research are summarised in Table I, in which the temperature of measurement, t°; the solvent; the dielectric constant, ε, of the solvent ; the polarisation of the solute at infinite dilution, $P_{2 \infty}$; and the moment, μ, are given. As in the previous work, the moment has been calculated at each temperature from the difference of the total polarisation at infinite dilution and the electronic polarisation. These data may be compared with the results found in different solvents at 20° for the polarisations of chlorobenzene and n-propyl chloride (Müller, Physikal. Z., 1933, 34, 689) as these two compounds closely resemble the two bromides both in magnitude of moment and in molecular structure. The influence of the solvent on the polarisation is very similar for the two pairs of substances.

Table I.

Solute.		Bromobenzene : $P_{\mathbf{E}}=34.0$ c.c.			Ethyl bromide : $P_{\text {E }}=19 \cdot 1$ c.c.		
Temp.	Solvent.	ϵ of solvt.	$P_{2 \infty}$.	μ.	ϵ of solvt.	$P_{2 \infty}$.	μ.
40°	$\mathrm{C}_{6} \mathrm{H}_{14}$	1.871	$84 \cdot 0$	1.59	1.871	$91 \cdot 5$	$1 \cdot 91$
40	$\mathrm{C}_{6} \mathrm{H}_{12}$	$1 \cdot 990$	$82 \cdot 2$	1.56	$1 \cdot 990$	$89 \cdot 5$	$1 \cdot 89$
40	CCl_{4}	$2 \cdot 197$	$78 \cdot 8$	1.50	$2 \cdot 196$	$89 \cdot 7$	1.89
40	$\mathrm{C}_{6} \mathrm{H}_{6}$	$2 \cdot 242$	$80 \cdot 7$	$1 \cdot 54$	$2 \cdot 242$	$89 \cdot 1$	1.88
40	$\mathrm{C}_{7} \mathrm{H}_{8}$	$2 \cdot 339$	$77 \cdot 5$	$1 \cdot 48$	$2 \cdot 338$	86.8	$1 \cdot 84$
20	$\mathrm{C}_{6} \mathrm{H}_{14}$	1.902	86.0	1.57	1.903	96.5	1.91
20	$\mathrm{C}_{6} \mathrm{H}_{12}$	$2 \cdot 020$	86.0	1.57	$2 \cdot 021$	96.5	$1 \cdot 91$
20	CCl_{4}	$2 \cdot 237$	81.7	1.50	$2 \cdot 236$	$95 \cdot 6$	1.90
20	$\mathrm{C}_{6} \mathrm{H}_{6}$	$2 \cdot 281$	$83 \cdot 6$	$1 \cdot 53$	$2 \cdot 280$	94.9	$1 \cdot 89$
20	$\mathrm{C}_{7} \mathrm{H}_{8}$	$2 \cdot 386$	$80 \cdot 8$	$1 \cdot 49$	$2 \cdot 385$	$90 \cdot 0$	1.83
20	CS_{2}	$2 \cdot 643$	$75 \cdot 4$	$1 \cdot 40$	$2 \cdot 642$	$81 \cdot 0$	$1 \cdot 71$
10	$\mathrm{C}_{6} \mathrm{H}_{12}$	2.035	87.5	1.56	$2 \cdot 037$	$98 \cdot 0$	1.90
10	$\mathrm{C}_{6} \mathrm{H}_{6}$	$2 \cdot 301$	$85 \cdot 2$	1.53	$2 \cdot 300$	96.5	1.88
0	$\mathrm{C}_{6} \mathrm{H}_{14}$	1.933	$90 \cdot 0$	1.57	1.933	$101 \cdot 0$	$1 \cdot 90$
0	$\mathrm{CCl}_{4}{ }^{14}$	$2 \cdot 276$	86.5	$1 \cdot 52$	$2 \cdot 277$	$99 \cdot 3$	1.88
0	$\mathrm{C}_{7} \mathrm{H}_{8}$	$2 \cdot 435$	$84 \cdot 8$	1.50	$2 \cdot 431$	$95 \cdot 2$	1.83
0	$\mathrm{CS}_{2}{ }^{\text {8 }}$	$2 \cdot 697$	$77 \cdot 0$	1.38	$2 \cdot 695$	$85 \cdot 6$	$1 \cdot 71$
-22.9	$\mathrm{C}_{6} \mathrm{H}_{14}$	1.966	93.5	1.55	1.965	$109 \cdot 0$	1.90
$-22 \cdot 9$	$\mathrm{C}_{7} \mathrm{H}_{8}^{14}$	$2 \cdot 488$	$87 \cdot 2$	$1 \cdot 47$	$2 \cdot 485$	$100 \cdot 0$	$1 \cdot 81$
-22.9	CS_{2}	$2 \cdot 758$	$81 \cdot 0$	$1 \cdot 38$	$2 \cdot 755$	89.5	$1 \cdot 69$

The figures in Table I indicate that the moment decreases with increase of dielectric constant of the solvent at any one temperature and the polarisation values plotted against the dielectric constant show regular variations. This is the case at all the four temperatures

The variation of $P_{2 \infty}$ of bromobenzene (points indicated by X) and ethyl bromide (points indicated by \odot) with ϵ, the dielectric constant of the solvent, at various temperatures (given by the figures).
at which several measurements have been made. The results are shown in the diagram. The variations found for the bromides are much smaller, as would be expected from the magnitude of the moments, than those found in the case of the nitriles; and the variation
of the moment in a particular solvent with the temperature, found for the latter compounds, is not evident here, as the moments of the bromides determined in one solvent remain constant within the limits of experimental error over the range investigated. The difference between the moments of two aromatic and aliphatic compounds of the same type in the vapour state can be compared with the difference from solution measurements. In the present instance, this difference for the vapours of ethyl bromide and bromobenzene is 0.30 , whereas the difference between the moments of these two bromides under the same conditions from the above solution measurements is $0.31-0.40$.

The lines obtained by plotting the values of the total polarisation at different temperatures in each solvent against the reciprocal of the absolute temperature are straight, the deviations of the readings lying within the error of measurement. Table II gives the values of the induced polarisation, $P_{\mathrm{E}+\mathrm{A}}$, obtained by extrapolation of these lines, and the value of the apparent atomic polarisation, P_{A}, is found by subtracting the electronic polarisation from the intercept.

Table II.

Solute.	Bromobenzene.		Ethyl bromide.		Solute.	Bromobenzene.		Ethyl bromide	
Solvent.	$\widehat{P_{\mathrm{E}}+\Delta}$	$P_{\text {A }}$,	$\overparen{P_{\text {E }+\mathrm{A}}}$,	$P_{\text {A }}$,		$\xrightarrow[P_{\text {E }}+\mathrm{A}]{ }$,	$P_{\text {A }}$,	$\overparen{P_{\text {E }}+\mathrm{A}}$,	$P_{\text {A }}$,
Solvent.	c.c.	c.c. 10	c.c.	c.c.	Solvent.	c.c.	c.c.	c.c.	c.c. 6
$\mathrm{C}_{6} \mathrm{H}_{12}$	38	4	22	3	$\mathrm{C}_{7} \mathrm{H}_{8}$	40	6	28	9
CCl_{4}	37	3	27	8	CS_{2}	42	8	25	6

The average of these approximate values in Table II is about 6 c.c. for the apparent atomic polarisation of each of the bromides : both results are larger than the values deduced from the vapour measurements on these compounds. Smyth and McAlpine (loc. cit.), from measurements on ethyl bromide vapour, find P_{Δ} to be 2.9 c.c., which is considerably smaller than the earlier value found from solutions in hexane, viz., 11 c.c. (Smyth and Morgan, loc. cit.). It has been pointed out (Smyth, J. Chem. Physics, 1933, 1, 247; Smyth and McAlpine, ibid., 1935, 3, 347 ; Jenkins, Trans. Faraday Soc., 1934, 30, 739) that these high values of the atomic polarisation are due to the slope of the $P_{2}-1 / T$ line, which is reduced by the change of the dielectric constant of the solvent with temperature, and thus makes the value of the intercept too large and the moment calculated from the slope too small. This is generally found to occur with the n-alkyl halides, so that the temperature method cannot be applied to these compounds with certainty. As explained above, we have calculated the moments at each temperature from $\left(P_{2_{\infty}}-P_{\mathrm{E}}\right)$. Groves and Sugden (loc. cit.) take the value of the atomic polarisation of bromobenzene as 5% of P_{E}, i.e., 1.7 c.c.

The variation of the polarisation with solvent and temperature has also been examined by Müller's method (Physikal. Z., 1934, 35, 346). When the values of $P_{0+\mathrm{A}} \times T$, the product of the orientation polarisation and the absolute temperature of measurement, are plotted against those of ε, the dielectric constant of the solvent at the same temperature, a smooth curve results. The curvature is not very marked, as the variations with the dielectric constant are relatively small. The product $P_{\mathrm{O}+\mathrm{A}} \times T$ varies in the case of bromobenzene from 1.56×10^{4} in hexane at 313° abs. to 1.18×10^{4} in carbon disulphide at 250.1° abs., and for ethyl bromide from 2.27×10^{4} to 1.76×10^{4} under the same conditions.

It has already been mentioned that the moments of the vapours of bromobenzene and ethyl bromide are higher than the solution values. This might be expected for molecules which possess radicals on their dipole axes (Frank, Proc. Roy. Soc., 1935, A, 152, 171) and have positive Kerr constants (Higasi, Bull. Inst. Phys. Chem. Res., Tokyo, 1934, 13, 1167).

Müller's equation (Physikal. Z., 1933, 34, 689) [see equation (1), Part XX, loc. cit.] is applicable to this type of molecule, and the results for the bromides at 20° have been corrected for the solvent effect by means of this equation. The calculated values of the total polarisation are given in Table III, together with that for the vapour at the same temperature. With the exception of the determinations in the anisotropic solvent carbondisulphide, the results are reasonably consistent and give average values of the total polarisation of 89.7 c.c. and 103.5 c.c. for bromobenzene and ethyl bromide, respectively. These correspond with moments of 1.60 and 1.99 respectively, whereas the experimental vapour values are $\mathbf{1 . 7 1}$ and 2.01. (The former two moments have been corrected for the atomic polarisation,
on the assumption that P_{A} is 5% of P_{E}, so that the experimental vapour moments are comparable with the calculated values.) The agreement in the latter case is good, while in the former the calculated value is the smaller, but as the moment is somewhat smaller here, the same errors in the calculation would be relatively more serious. It may be noted that the results of solution measurements on chlorobenzene on correction by Müller's equation give values lower than that for the vapour of this compound. Thus, data in nine solvents give calculated vapour values of $1 \cdot 62-1 \cdot 67$, with a mean value of $1 \cdot 65$, a little lower than the vapour value of 1.70 (McAlpine and Smyth, J. Chem. Physics, 1935, 3, 55).

Table III.

Calculations have also been made by using Sugden's equation (Trans. Faraday Soc., 1934, 30, 720) [see equation (2), Part XX] and the values so obtained are included in Table III. The variations between individual values calculated from results in different solvents are not large, with the exception of the values from carbon disulphide solutions. In the results of Table III no allowance has been made for the constant α of Sugden's equation. The mean values of the total polarisation of bromobenzene and ethyl bromide from Table III are 102.8 c.c. and 123.9 c.c. respectively. To make these values correspond with the vapour results of 97.6 c.c. and $106 \cdot 4$ c.c. respectively, the constant α would be about 5 c.c. for bromobenzene and 17 c.c. for ethyl bromide. These constants are only approximate, as they are mean values from determinations in a number of solvents.

In Part XX (loc. cit.) the equation (5), deduced by Govinda Rau (Proc. Indian Acad. Sci., 1935, A, 1, 498) from the theory of Raman and Krishnan (Proc. Roy. Soc., 1928, A, 117, 589) for a solution of a polar substance in a non-polar solvent, was applied to the results, and it was shown that the polarisation value corrected for solvent influences was, in the case of benzonitrile, nearly equal to that deduced from Müller's equation. We have used the equation in the present research, making assumptions for bromobenzene similar to those previously used for benzonitrile. The constants used for ethyl bromide and the solvents are taken from published data (Govinda Rau, loc. cit.; Krishnan and Rao, Indian J. Physics, $1929-30,4,39$; Ramanadham, Proc. Indian Acad. Sci., 1934, A, 1, 281) and are given in Table V. In the calculations, the values of the moments of bromobenzene and ethyl bromide are taken as $\mathbf{1 . 6}$ and $\mathbf{1 . 9}$ respectively. The calculated values are given in Table IV. (For definitions of the symbols in Tables IV and V, see Part XX, p. 1188.)

The average of the calculated values of the polarisation in the first four solvents for bromobenzene is 90.5 c.c., with a corresponding moment, corrected for P_{A}, of 1.61 , while the experimental vapour value is $\mathbf{1 . 7 1}$. The most significant correction in the above calculations is the third term involving Θ (assumed equal to $\mu^{2} s_{1}$). If it is assumed that the whole of the difference between the calculated and the experimental vapour polarisations is due to error in this term, a value of s_{1} can be calculated from the vapour value of the polarisation. From the foregoing results for bromobenzene in hexane and benzene, s_{1} is found to be about -2.5, of the same order as but larger than the value assumed in the calculations. Govinda Rau (loc. cit.) has already pointed out that the value of s_{1} found in this way for some other compounds is larger than the figure deduced from theoretical considerations and used in the calculations. It seems, therefore, that in several cases the calculated value of the term $\mu^{2} s_{1}$ is somewhat smaller than is necessary to account for its contribution to the difference between the solution and vapour values, a view in agreement with that expressed by Frank (Chem. and Ind., 1936, 14, 37). In view of the approximate nature of the treatment and the uncertainty in the constants involved in the calculations, the calculated and the experimental moments are reasonably close. The corresponding calculated values for the total vapour polarisation and moment corrected for P_{A} are 101.4 c.c. and 1.96 for ethyl bromide, whereas the experimental vapour moment is 2.01 , in better agreement than in the case of bromobenzene.

Table V.

	Solvent.	s_{1}.	s_{2}.	s_{3}.	$a_{1} \times 10^{23}$.	$a_{2} \times 10^{23}$.	$a_{3} \times 10^{23}$.
$\mathrm{C}_{6} \mathrm{H}_{14}$		-1.78	$0 \cdot 89$	0.89	$1 \cdot 44$	$1 \cdot 07$	$1 \cdot 07$
$\mathrm{C}_{6} \mathrm{H}_{12}$		-0.75	-0.75	$1 \cdot 5$	$1 \cdot 31$	$1 \cdot 31$	0.98
CCl_{4}.		0	0	0			
$\mathrm{C}_{6} \mathrm{H}_{6}$.		-1.21	-1.21	$2 \cdot 42$	1.41	$1 \cdot 41$	0.71
CS_{2}		-0.91	$0 \cdot 46$	$0 \cdot 46$	$1 \cdot 43$	$0 \cdot 59$	$0 \cdot 59$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$		-	-	-	$1 \cdot 85$	$1 \cdot 85$	$0 \cdot 93$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$		-0.81	$0 \cdot 40$	$0 \cdot 40$	$1 \cdot 26$	$0 \cdot 91$	0.91

The method of Higasi (Sci. Papers Inst. Phys. Chem. Res., Japan, 1936, 28, 284) can be used to find the relation between experimental and theoretical values of $\Sigma \mu_{i} / \mu_{\text {, where }} \Sigma \mu_{i}$ is the sum of the induced moments produced by dissolving the molecule in a solvent, and μ is the dipole moment in the vapour state. The two compounds now being considered are somewhat similar in molecular structure to the two nitriles previously investigated, and fall into the same category as the latter compounds, having values of $k>1$ and thus a negative value of A. [See equations (6)-(9); Part XX.] As no figures for k are available, the values of k assumed are : for bromobenzene 1.65 (Higasi, loc. cit.), and for ethyl bromide $1 \cdot 3$ (that of methyl bromide : the values for ethyl chloride and methyl chloride are approximately the same ; cf. Stuart, " Molekülstructur," Berlin, 1934, pp. 221, 234). The calculated and experimental values of $\Sigma \mu_{i} / \mu$ are collected in Table VI, together with the necessary data for the solvents (all results relating to 20°). All the solution values of the moments in Table VI have been corrected for the atomic polarisation, taken as 5% of the electronic polarisation. The calculated values in the case of carbon disulphide, which are lower than the others, being omitted, the average values of the calculated vapour moments are 1.66 and 1.99 for bromobenzene and ethyl bromide respectively, compared with the experimental vapour values of 1.71 and 2.01 .

Table VI.

Solute.		Bromobenzene ($A=-0 \cdot 112$).				Ethyl bromide ($A=-0.0673$).			
		$\Sigma \mu_{i} / \mu$.					$\Sigma \mu_{i} / \mu$.		
Solvent.	$4 \pi \nu a$.	$\begin{gathered} \mu, \\ \exp t l \end{gathered}$	Exptl.	Calc.	$\mu_{\text {vap. }}$, calc.	$\stackrel{\mu}{\mu}{ }_{\text {exptl }}$	Exptl.	Calc.	$\mu_{\text {rap. }}$ calc.
(Vapour)	-	$1 \cdot 71$	-	-	-	$2 \cdot 01$	-	-	-
$\mathrm{C}_{6} \mathrm{H}_{14} \ldots .$.	$0 \cdot 693$	$1 \cdot 54$	$-0 \cdot 10$	$-0 \cdot 08$	$1 \cdot 68$	1.90	-0.05	-0.05	$2 \cdot 00$
$\mathrm{C}_{6} \mathrm{H}_{12}$	$0 \cdot 761$	$1 \cdot 54$	$-0 \cdot 10$	-0.08	1.68	1.90	-0.05	-0.05	$2 \cdot 00$
CCl_{4},	0.876	$1 \cdot 47$	$-0 \cdot 14$	$-0 \cdot 10$	$1 \cdot 64$	1.89	-0.06	-0.05	1.99
$\mathrm{C}_{6} \mathrm{H}_{6}$	0.898	$1 \cdot 50$	$-0 \cdot 12$	$-0 \cdot 10$	$1 \cdot 67$	1.88	-0.06	-0.06	$2 \cdot 00$
$\mathrm{C}_{7} \mathrm{H}_{8}$	$0 \cdot 948$	$1 \cdot 46$	$-0 \cdot 14$	$-0 \cdot 11$	$1 \cdot 65$	$1 \cdot 82$	-0.09	-0.06	$1 \cdot 94$
CS_{2}.	$1 \cdot 062$	$1 \cdot 37$	$-0 \cdot 20$	$-0 \cdot 12$	$1 \cdot 58$	$1 \cdot 70$	$-0 \cdot 15$	-0.07	$1 \cdot 84$

The main uncertainty in the application of these last two theoretical formulæ is the evaluation of the difficultly accessible constants. In view of the approximations made to obtain these constants, the calculated figures for the vapour moments are on the whole in fairly satisfactory quantitative agreement with the experimental results.

Experimental.

The apparatus and technique employed in the present research have been described in preceding papers in this series (Cowley and Partington, J., 1935, 604; 1936, 1184).

Preparation of Materials.-Bromides. Bromobenzene (Kahlbaum) was purified by fractionating it twice through a column. The properties were: b. p. $155 \cdot 0^{\circ} / 756 \mathrm{~mm}$., $D_{4^{\circ}}^{20^{\circ}} 1 \cdot 4950$, $n_{\mathrm{D}}^{20^{\circ}} 1.5600$, $\left[R_{L}\right]_{\mathrm{D}}^{20^{\circ}} 33.96$ c.c. Figures for comparison are: b. p. $155 \cdot 6^{\circ} / 760 \mathrm{~mm}$. (Weger, Annalen, 1883, 221, 71) ; $155 \cdot 0^{\circ}$, corr. (Perkin, J., 1896, 69, 1248) ; $154 \cdot 6-155 \cdot 0^{\circ} / 741 \cdot 9 \mathrm{~mm}$.; $D_{4^{\circ}}^{20^{\circ}} 1 \cdot 4914, n_{\mathrm{D}}^{20^{\circ}} 1.5598$ (Brühl, Annalen, 1880, 200, 187) ; $D_{4^{\circ}}^{20^{\circ}} 1 \cdot 4953$ (Biron, Chem. Zentr., 1910, 14, I, 1912) ; b. p. $155 \cdot 4-155 \cdot 6^{\circ} / 760 \mathrm{~mm}$., $D_{4^{\circ}}^{20^{\circ}} 1 \cdot 4946, n_{\mathrm{D}}^{20^{\circ}} 1.5600$ (Bugarsky, Z. physikal. Chem., 1910, 71, 712). Ethyl bromide (Kahlbaum) was twice shaken with concentrated sulphuric acid and separated. It was washed with distilled water several times, dried over calcium chloride, and twice fractionated. Its physical properties were: b. p. $38 \cdot 2^{\circ} / 755 \mathrm{~mm}$., $D_{4^{\circ}}^{20^{\circ}} 1 \cdot 4600$, $n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4244,\left[R_{L}\right]_{\mathrm{D}}^{20^{\circ}} 19 \cdot 06$ c.c. Previous determinations are: b. p. $38 \cdot 4^{\circ} / 760 \mathrm{~mm}$. (Timmermans, Chem. Zentr., 1911, 15, II, 1015; Tyrer, J., 1914, 105, 2538), $D_{40^{\circ}}^{20^{\circ}} 1 \cdot 45983$ (Patterson and Thomson, J., 1908, 93, 371), 1•4555, $n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 42386$ (Weegmann, Z. physikal. Chem., 1888, 2, 231), $D_{40^{\circ}}^{20^{\circ}} 1.4586$ (Smyth and Morgan, J. Amer. Chem. Soc., 1928, 50, 1547), $n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4239$ (I. C. T.).

Solvents. With the exception of hexane (" from petroleum '), which was obtained from Kahlbaum, the solvents were obtained from the same sources and were purified as described in Part XX (loc cit.).

Results.-The symbols and method of calculation are those previously employed in this series. The moments are calculated at each temperature from $P_{2 \infty}$ minus $P_{\mathbf{E}}, P_{\mathbf{A}}$ being included with the orientation polarisation. The solvent and temperature of each measurement are stated.

Solute: Bromobenzene.

f_{2}.	ϵ. In	$D_{4}^{\circ} \cdot$ xane at	$\begin{aligned} & P_{12}, \text { c.c. } \\ & \rho^{\circ} . \end{aligned}$	P_{2}, c.c.	f_{2}.	${ }_{\text {f. }}^{\text {In }}$	$D_{4^{\circ}}^{\iota^{\circ}}$ xane at	$P_{12}, \text { c. }$	P_{2}, c.c.
0.000000	1.871	0.6566	$29 \cdot 52$		0.000000	1.902	$0 \cdot 6746$	$29 \cdot 52$	
$0 \cdot 014459$	$1 \cdot 905$	$0 \cdot 6666$	$30 \cdot 31$	$83 \cdot 7$	$0 \cdot 014459$	1.938	$0 \cdot 6845$	$30 \cdot 33$	$85 \cdot 7$
$0 \cdot 027657$	$1 \cdot 936$	0.6755	31.02	$83 \cdot 6$	$0 \cdot 027657$	1.972	$0 \cdot 6939$	$31 \cdot 07$	$85 \cdot 6$
$0 \cdot 039897$	$1 \cdot 965$	$0 \cdot 6839$	31.66	$83 \cdot 0$	$0 \cdot 039897$	$2 \cdot 003$	$0 \cdot 7022$	31.75	$85 \cdot 3$
$0 \cdot 053721$	1.997	$0 \cdot 6935$	$32 \cdot 35$	$82 \cdot 2$	$0 \cdot 053721$	2.039	$0 \cdot 7119$	$32 \cdot 50$	$85 \cdot 0$
$\begin{aligned} & P_{2 \infty} \\ & P_{2 \infty} \end{aligned}$	$\begin{aligned} & =84 \\ & -P_{\mathbf{E}} \end{aligned}$	$\underset{50 \cdot 0 \text { c.c. }}{. P_{\mathrm{E}}}$	$\begin{aligned} & 34 \cdot 0 \mathrm{c} . \mathrm{c} \\ & \mu=1.5 \end{aligned}$			$\begin{aligned} & =86 \\ & -P_{\mathbf{E}} \end{aligned}$	$\begin{aligned} & . c . ; P_{\mathrm{E}} \\ & 52.0 \text { c.c } \end{aligned}$	$\begin{aligned} & 34 \cdot 0 \mathrm{c} \\ & \mu=1 . \end{aligned}$	
In hexane at 0°.					In hexane at $-22 \cdot 9^{\circ}$.				
0.000000	1.933	0.6925	29.51		$0 \cdot 000000$	1.966	$0 \cdot 7115$	$29 \cdot 49$	
$0 \cdot 014459$	1.973	0.7026	$30 \cdot 38$	$89 \cdot 6$	0.014459	$2 \cdot 010$	$0 \cdot 7221$	$30 \cdot 40$	92.9
$0 \cdot 027657$	$2 \cdot 010$	$0 \cdot 7119$	$31 \cdot 17$	$89 \cdot 6$	0.027657	$2 \cdot 052$	$0 \cdot 7322$	$31 \cdot 24$	$92 \cdot 8$
$0 \cdot 039897$	2.044	$0 \cdot 7204$	31.88	$89 \cdot 0$	0.039897	$2 \cdot 090$	$0 \cdot 7415$	$31 \cdot 98$	$91 \cdot 8$
$0 \cdot 053721$	$2 \cdot 082$	$0 \cdot 7303$	$32 \cdot 65$	$87 \cdot 9$	0.053721	$2 \cdot 133$	$0 \cdot 7512$	32-82	$91 \cdot 6$
$\begin{aligned} & P_{2 \infty} \\ & P_{2 \infty} \end{aligned}$	$\begin{aligned} & =90 \cdot 0 \\ & -P_{\mathbf{E}} \end{aligned}$	$\begin{gathered} \text { c. } ; P_{\mathrm{E}} \\ 56.0 \text { c.c. } \end{gathered}$	$\begin{aligned} & 34.0 \mathrm{c} . \mathrm{c} \\ & \mu=1.5 \end{aligned}$			$\begin{aligned} & =93 \\ & -P_{\mathbf{E}} \end{aligned}$	$.$	$\begin{aligned} & 34.0 \mathrm{c} . \mathrm{c} \\ & \mu=1.5 \end{aligned}$	
In cyclohexane at 40°.					In cyclohexane at 20°.				
0.000000	1.990	0.7596	27.48	-	$0 \cdot 000000$	2.020	0.7781	27.43	
0.010995	$2 \cdot 019$	0.7670	$28 \cdot 07$	$81 \cdot 5$	$0 \cdot 010995$	$2 \cdot 052$	$0 \cdot 7853$	28.08	86.0
$0 \cdot 021436$	$2 \cdot 047$	0.7741	28.64	$81 \cdot 4$	$0 \cdot 021436$	$2 \cdot 082$	$0 \cdot 7924$	28.66	$84 \cdot 8$
$0 \cdot 032298$	$2 \cdot 076$	0.7813	$29 \cdot 22$	$81 \cdot 3$	0.032298	$2 \cdot 114$	$0 \cdot 8000$	$29 \cdot 27$	$84 \cdot 4$
$0 \cdot 041673$	$2 \cdot 100$	0.7878	$29 \cdot 68$	$80 \cdot 4$	$0 \cdot 041673$	2-141	$0 \cdot 8065$	$29 \cdot 78$	$85 \cdot 0$
$\begin{aligned} & P_{2 \infty} \\ & P_{2 \infty} \end{aligned}$	$\begin{aligned} & =82 \cdot 2 \\ & -P_{\mathbf{E}} \end{aligned}$	$\begin{aligned} & \mathrm{c} . ; P_{\mathrm{E}} \\ & 48 \cdot 2 \mathrm{c} . \mathrm{c} \end{aligned}$	$\begin{aligned} & 34.0 \mathrm{c.c} \\ & \mu=1.5 \end{aligned}$			$\begin{aligned} & =86 \\ & -P_{\mathbf{E}} \end{aligned}$	$\begin{gathered} . \mathrm{c} . ; P_{\mathrm{E}} \\ 52 \cdot 0 \mathrm{c.c} \end{gathered}$	$\begin{aligned} & 34.0 \mathrm{c} . \mathrm{c} \\ & \mu=1.5 \end{aligned}$	
In cyclohexane at 10°.					In carbon tetrachloride at 40°.				
$0 \cdot 000000$	2.035	0.7874	$27 \cdot 41$	-	$0 \cdot 000000$	$2 \cdot 197$	$1 \cdot 5557$	28.21	
$0 \cdot 010995$	$2 \cdot 069$	$0 \cdot 7950$	28.07	$87 \cdot 4$	$0 \cdot 009065$	$2 \cdot 223$	$1 \cdot 5550$	$28 \cdot 66$	78.2
$0 \cdot 021436$	$2 \cdot 101$	$0 \cdot 8023$	28.67	$86 \cdot 3$	$0 \cdot 020477$	$2 \cdot 257$	$1 \cdot 5544$	$29 \cdot 23$	$78 \cdot 4$
$0 \cdot 032298$	$2 \cdot 133$	$0 \cdot 8099$	$29 \cdot 27$	$85 \cdot 2$	$0 \cdot 030396$	$2 \cdot 288$	$1 \cdot 5537$	29.75	$79 \cdot 1$
$0 \cdot 041673$	$2 \cdot 162$	$0 \cdot 8165$	$29 \cdot 81$	$85 \cdot 0$	$0 \cdot 039254$	$2 \cdot 314$	$1 \cdot 5530$	$30 \cdot 20$	78:9
$\begin{aligned} & P_{2 \infty}=87.5 \text { c.c. } ; P_{\mathrm{E}}=34.0 \text { c.c.; } \\ & P_{2 \infty}-P_{\mathrm{E}}=53.5 \text { c.c. } ; \mu=1 \cdot 56 . \end{aligned}$					$\begin{aligned} & P_{2 \infty}=78.8 \text { c.c. } ; P_{\mathrm{E}}=34.0 \text { c.c.; } \\ & P_{2 \infty}-P_{\mathrm{E}}=44.8 \text { c.c. } ; \mu=1 \cdot 50 . \end{aligned}$				

$f_{2} . \quad \epsilon . \quad D_{4^{\circ}}^{\iota^{\circ}} \quad P_{12}$, c.c. $\quad P_{2}$, c.c. In carbon tetrachloride at 20°.

$0 \cdot 000000$	$2 \cdot 237$	$1 \cdot 5940$	$28 \cdot 18$
$0 \cdot 009065$	$2 \cdot 266$	$1 \cdot 5932$	$28 \cdot 66$
$0 \cdot 020477$	$2 \cdot 303$	$1 \cdot 5919$	$29 \cdot 27$
$0 \cdot 030396$	$2 \cdot 335$	$1 \cdot 5908$	29.80
$0 \cdot 039254$	2.365	$1 \cdot 5902$	30.28
$\begin{aligned} & P_{2 \infty}=81 \cdot 7 \text { c.c. } ; P_{\mathrm{E}}=34 \cdot 0 \text { c.c. } ; \\ & P_{2 \infty}-P_{\mathrm{E}}=47 \cdot 7 \text { c.c. } ; \mu=1 \cdot 50 . \end{aligned}$			
In benzene at 40°.			
$0 \cdot 000000$	$2 \cdot 242$	0.8577	26.65
$0 \cdot 010889$	$2 \cdot 278$	$0 \cdot 8656$	$27 \cdot 24$
$0 \cdot 020779$	$2 \cdot 310$	$0 \cdot 8729$	$27 \cdot 76$
$0 \cdot 031199$	$2 \cdot 344$	$0 \cdot 8802$	28.31
$0 \cdot 040406$	$2 \cdot 375$	$0 \cdot 8866$	28.81
$\begin{aligned} & P_{2 \infty}=80.7 \text { c.c. } ; P_{\mathbf{E}}=34.0 \text { c.c.; } \\ & P_{2 \infty}-P_{\mathbf{E}}=46.7 \text { c.c. } ; \mu=1.54 . \end{aligned}$			

In benzene at 10°.

0.000000	$2 \cdot 301$	0.8893	26.56	-
0.010889	$2 \cdot 342$	0.8973	$27 \cdot 19$	$84 \cdot 6$
0.020779	$2 \cdot 380$	0.9046	$27 \cdot 77$	$84 \cdot 7$
0.031199	$2 \cdot 419$	0.9122	28.35	$84 \cdot 1$
0.040406	2.454	0.9190	28.87	83.8

$P_{2 \infty}=85 \cdot 2$ c.c. $; P_{\mathbf{E}}=34 \cdot 0$ c.c.;
$P_{2 \infty}-P_{\mathbf{E}}=51 \cdot 2$ c.c. $; \mu=1 \cdot 53$.

In toluene at 20°.

0.000000	$2 \cdot 386$	0.8662	33.60
0.011377	$2 \cdot 418$	0.8730	$34 \cdot 13$
0.022612	2.451	0.8801	34.66
0.033160	2.481	0.8864	$35 \cdot 14$
0.043308	2.511	0.8929	$35 \cdot 60$

$80 \cdot 5$
$80 \cdot 3$
$80 \cdot 1$
$79 \cdot 9$
$P_{2 \infty}=80.8$ c.c.; $P_{\mathbf{E}}=34.0$ c.c.;
$P_{2 \infty}^{2 \infty}-P_{\mathrm{E}}=46.8$ c.c. $; \mu=1.49$.
In toluene at -22.9°.

$0 \cdot 000000$	$2 \cdot 488$	0.9058	$33 \cdot 71$
$0 \cdot 011377$	$2 \cdot 527$	$0 \cdot 9127$	34.31
$0 \cdot 022612$	$2 \cdot 567$	$0 \cdot 9197$	34.91
$0 \cdot 033160$	$2 \cdot 605$	0.9262	$35 \cdot 47$
$0 \cdot 043308$	$2 \cdot 640$	0.9327	35.96
$\begin{aligned} & P_{2 \infty}=87.2 \text { c.c. } ; P_{\mathrm{E}}=34.0 \mathrm{c.c} . ; \\ & P_{2 \infty}-P_{\mathrm{E}}=53.2 \text { c.c. } ; \mu=1 \cdot 47 . \end{aligned}$			

In carbon disulphide at 0°.

$0 \cdot 000000$	$2 \cdot 697$	$1 \cdot 2929$	$21 \cdot 27$	-
0.011036	$2 \cdot 751$	$1 \cdot 2969$	$21 \cdot 89$	$77 \cdot 0$
$0 \cdot 021846$	$2 \cdot 802$	$1 \cdot 3009$	$22 \cdot 47$	$76 \cdot 2$
$0 \cdot 030500$	$2 \cdot 849$	$1 \cdot 3044$	$22 \cdot 98$	$76 \cdot 0$
$0 \cdot 042312$	$2 \cdot 906$	$1 \cdot 3090$	$23 \cdot 61$	$76 \cdot 5$
$P_{2 \infty}$	$=77 \cdot 0$	c.c. $; P_{\mathrm{E}}=34 \cdot 0$ c.c.;		
$P_{2 \infty}$	$-P_{\mathrm{E}}=43 \cdot 0$ c.c.; $\mu=1 \cdot 38$.			

$f_{2} . \quad \epsilon . \quad D_{4^{*}}^{t^{*}} \quad P_{12}$, c.c. $\quad P_{2}$, c.c.
In carbon tetrachloride at 0°.

$0 \cdot 000000$	$2 \cdot 276$	$1 \cdot 6326$	$28 \cdot 11$	
$0 \cdot 009065$	$2 \cdot 309$	$1 \cdot 6320$	$28 \cdot 64$	86.4
$0 \cdot 020477$	$2 \cdot 351$	$1 \cdot 6309$	$29 \cdot 30$	86.0
$0 \cdot 030396$	$2 \cdot 387$	$1 \cdot 6296$	$29 \cdot 86$	85.8
$0 \cdot 039254$	$2 \cdot 420$	$1 \cdot 6290$	30.36	$85 \cdot 4$
$\begin{aligned} & P_{2 \infty}=86.5 \text { c.c. } ; P_{\mathbf{E}}=34.0 \text { c.c.; } \\ & P_{2 \infty}-P_{\mathbf{E}}=52.5 \text { c.c. } ; \mu=1 \cdot 52 . \end{aligned}$				
In benzene at 20°.				
$0 \cdot 000000$	$2 \cdot 281$	0.8787	26.59	
$0 \cdot 010889$	$2 \cdot 320$	$0 \cdot 8866$	$27 \cdot 20$	83.2
$0 \cdot 020779$	$2 \cdot 356$	0.8938	$27 \cdot 76$	$83 \cdot 2$
$0 \cdot 031199$	$2 \cdot 395$	$0 \cdot 9010$	$28 \cdot 37$	$83 \cdot 1$
$0 \cdot 040406$	$2 \cdot 427$	$0 \cdot 9078$	28.86	82•7
$\begin{aligned} & P_{2 \infty}=83.6 \text { c.c. } ; P_{\mathbf{E}}=34.0 \text { c.c. } ; \\ & P_{2 \infty}-P_{\mathrm{E}}=49.6 \text { c.c. } ; \mu=1.53 . \end{aligned}$				
In toluene at 40°.				
$0 \cdot 000000$	$2 \cdot 339$	$0 \cdot 8478$	$33 \cdot 52$	
$0 \cdot 011377$	$2 \cdot 368$	$0 \cdot 8548$	34.01	$76 \cdot 9$
$0 \cdot 022612$	$2 \cdot 397$	0.8616	34.50	$76 \cdot 9$
$0 \cdot 033160$	$2 \cdot 426$	$0 \cdot 8680$	34.98	$77 \cdot 6$
$0 \cdot 043308$	$2 \cdot 453$	$0 \cdot 8746$	$35 \cdot 41$	$77 \cdot 1$

$P_{2 \infty}=77.5$ c.c. $; P_{\mathrm{E}}=34.0$ c.c. $;$
$P_{2 \infty}^{2 \infty}-P_{\mathrm{E}}=43.5$ c.c. $; \mu=1.48$.
In toluene at 0°.

0.000000	2.435	0.8846	33.69	-
0.011377	2.472	0.8918	34.27	$84 \cdot 5$
0.022612	2.507	0.8988	34.82	$83 \cdot 7$
0.033160	2.539	0.9056	35.37	$84 \cdot 3$
0.043308	2.573	0.9115	35.82	82.8

$P_{2 \infty}=84.8$ c.c. $; P_{\mathbf{E}}=34.0$ c.c.;
$P_{2 \infty}^{2 \infty}-P_{\mathbf{E}}=50.8$ c.c. $; \mu=1.50$.
In carbon disulphide at 20°.

	0.000000	$2 \cdot 643$	$1 \cdot 2633$	$21 \cdot 32$	-
86.5	0.011036	$2 \cdot 691$	1.2672	21.91	$74 \cdot 8$
86.6	0.021846	2.741	1.2716	22.50	$75 \cdot 0$
86.7	0.030500	2.778	$1 \cdot 2746$	$22 \cdot 95$	$74 \cdot 5$
$85 \cdot 7$	0.042312	2.831	$1 \cdot 2791$	23.57	$74 \cdot 5$

$P_{2 \infty}=75.4$ c.c. $; P_{\mathrm{E}}=34.0$ c.c. $;$
$P_{2 \infty}-P_{\mathrm{E}}=41.4 \mathrm{c.c} . ; \mu=1 \cdot 40$.

In carbon disulphide at $-\mathbf{2 2 . 9}{ }^{\circ}$.

$0 \cdot 000000$	$2 \cdot 758$	$1 \cdot 3247$	21.23	
$0 \cdot 011036$	$2 \cdot 819$	$1 \cdot 3286$	21.88	80
$0 \cdot 021846$	2.881	$1 \cdot 3326$	22.53	80
$0 \cdot 030500$	2.928	$1 \cdot 3359$	23.01	79
$0 \cdot 042312$	$2 \cdot 992$	$1 \cdot 3405$	23.68	79.
$\begin{aligned} & P_{2 \infty}=81 \cdot 0 \text { c.c. } ; P_{\mathbf{E}}=34.0 \text { c.c.; } \\ & P_{2 \infty}-P_{\mathrm{E}}=47 \cdot 0 \text { c.c. } ; \mu=1 \cdot 38 . \end{aligned}$				

Solute: Ethyl bromide.

In hexane at 40°.

0.000000	1.871	0.6568	29.51
0.010815	1.901	0.6612	30.18
0.021909	1.932	0.6658	30.85
0.031863	1.960	0.6700	31.43
0.040300	1.985	0.6736	31.94

$P_{2 \infty}=91.5$ c.c. $; P_{\mathrm{E}}=19.1$ c.c. $;$
$P_{2 \infty}^{2 \infty}-P_{\mathrm{E}}=72.4$ c.c. $; \mu=1.91$.
In hexane at 0°.

0.000000	1.933	0.6925	29.51
0.010815	1.971	0.6976	30.28
0.021909	2.010	0.7029	31.05
0.031863	2.045	0.7073	31.73
0.040300	2.078	0.7115	32.34
$P_{2 \infty}$	$=101.0$ c.c. $; P_{\mathbf{E}}=19 \cdot 1$ c.c.; $;$		
$P_{2 \infty}$	$=P_{\mathbf{E}}=81.9$ c.c. $; \mu=1.90$.		

In hexane at 20°.

$91 \cdot 2$ 90.5 $89 \cdot 9$ 89.8

$0 \cdot 000000$	1.903	0.6748	29.54	
$0 \cdot 010815$	$1 \cdot 937$	0.6796	$30 \cdot 26$	$96 \cdot 1$
$0 \cdot 021909$	1.972	$0 \cdot 6844$	$30 \cdot 98$	$95 \cdot 4$
$0 \cdot 031863$	$2 \cdot 005$	$0 \cdot 6890$	$31 \cdot 64$	$95 \cdot 6$
$0 \cdot 040300$	$2 \cdot 033$	$0 \cdot 6930$	32.17	$95 \cdot 0$
$\begin{aligned} & P_{2 \infty}=96.5 \text { c.c. } ; P_{\mathrm{E}}=19.1 \text { c.c. } ; \\ & P_{2 \infty}-P_{\mathbf{E}}=77.4 \text { c.c. } ; \mu=1.91 . \end{aligned}$				
In hexane at -22.9°.				
$0 \cdot 000000$	1.965	$0 \cdot 7133$	$29 \cdot 39$	
$0 \cdot 010815$	$2 \cdot 006$	$0 \cdot 7175$	$30 \cdot 24$	$107 \cdot 6$
$0 \cdot 021909$	$2 \cdot 050$	$0 \cdot 7232$	31.06	$105 \cdot 7$
$0 \cdot 031863$	$2 \cdot 089$	0.7279	31.79	$104 \cdot 6$
$0 \cdot 040300$	$2 \cdot 124$	0.7324	$32 \cdot 40$	104.0

$$
P_{2 \infty}=109 \cdot 0 \text { c.c. } ; P_{\mathbf{E}}=19 \cdot 1 \text { c.c. }
$$

$$
P_{2 \infty}-P_{\mathrm{E}}=89 \cdot 9 \text { c.c. } ; \mu=1 \cdot 90 .
$$

$f_{2} . \quad \epsilon . \quad D_{4^{\circ}}^{\iota^{\circ}} \quad P_{12}$, c.c. $\quad P_{2}$, c.c.
In cyclohexane at 40°.

$0 \cdot 000000$	1.990	0.7596	$27 \cdot 48$
0.011198	$2 \cdot 028$	$0 \cdot 7649$	$28 \cdot 16$
$0 \cdot 022499$	$2 \cdot 066$	0.7694	28.85
0.033081	$2 \cdot 102$	0.7740	$29 \cdot 49$
$0 \cdot 044380$	2-142	0.7793	$30 \cdot 15$
$\begin{aligned} & P_{2 \infty}=89 \cdot 5 \text { c.c. } ; P_{\mathbf{E}}=19 \cdot 1 \text { c.c. } ; \\ & P_{2 \infty}-P_{\mathbf{E}}=70 \cdot 4 \text { c.c. } ; \mu=1 \cdot 89 . \end{aligned}$			
	In cyclohexane at 10°.		
$0 \cdot 000000$	2.037	$0 \cdot 7876$	$27 \cdot 44$
0.011198	$2 \cdot 082$	$0 \cdot 7926$	$28 \cdot 23$
$0 \cdot 022499$	$2 \cdot 127$	0.7976	28.99
$0 \cdot 033081$	$2 \cdot 170$	$0 \cdot 8026$	$29 \cdot 70$
0.044380	$2 \cdot 217$	$0 \cdot 8076$	$30 \cdot 46$
$\begin{aligned} & P_{2 \infty}=98.0 \text { c.c. } ; P_{\mathbf{E}}=19.1 \text { c.c.; } \\ & P_{2 \infty}-P_{\mathbf{E}}=78.9 \text { c.c. } ; \mu=1.90 . \end{aligned}$			

In carbon tetrachloride at 20°.

0.000000	$2 \cdot 236$	1.5941	$28 \cdot 16$
0.011285	$2 \cdot 288$	1.5932	$28 \cdot 91$
0.020309	$2 \cdot 330$	1.5923	$29 \cdot 50$
0.032703	2.387	1.5911	$30 \cdot 27$
0.043769	$2 \cdot 438$	1.5901	$30 \cdot 95$
$P_{2 \infty}$	$=95 \cdot 6$ c.c.; $P_{\mathrm{E}}=19 \cdot 1$ c.c. $;$		
$P_{2 \infty}$	$-P_{\mathbf{E}}=76.5$ c.c. $; \mu=1.90$.		

In benzene at 40°.

$0 \cdot 000000$	$2 \cdot 242$	$0 \cdot 8577$	$26 \cdot 65$
$0 \cdot 010361$	$2 \cdot 288$	0.8625	$27 \cdot 30$
0.020265	2.332	0.8673	$27 \cdot 90$
0.029903	2.375	0.8720	$28 \cdot 47$
0.039828	2.421	0.8767	$29 \cdot 10$
$P_{2 \infty}$	$=89 \cdot 1$	c.c. $; P_{\text {I }}=19 \cdot 1$ c.c. $;$	
$P_{2 \infty}$	$=P_{\text {E }}=70.0$ c.c. $; \mu=1.88$.		

In benzene at 10°.

0.000000	2.300	0.8891	26.55
0.010361	2.354	0.8940	27.27
0.020265	2.407	0.8990	27.95
0.029903	2.458	0.9039	28.58
0.039828	2.513	0.9089	29.25
$P_{2 \infty}$	$=96.5$	c.c. $; P_{\mathrm{E}}=19 \cdot 1$ c.c.;	
$P_{2 \infty}$	$-P_{\mathrm{E}}=77.4$ c.c.; $\mu=1.88$.		

In toluene at 20°.

0.000000	2.385	0.8664	33.57
0.011197	2.430	0.8710	34.20
0.022016	2.474	0.8757	34.78
0.032097	2.516	0.8801	35.33
0.042638	2.560	0.8845	35.89
$P_{2 \infty}$	$=90 \cdot 0$	c.c.; $P_{\mathbf{E}}=19 \cdot 1$ c.c.;	
$P_{2 \infty}^{2 \infty}$	$=P_{\mathbf{E}}=70.9$ c.c.; $\mu=1 \cdot 83$.		

In toluene at $-22 \cdot 9^{\circ}$.

0.000000	$2 \cdot 485$	0.9058	$33 \cdot 65$
0.011197	$2 \cdot 544$	0.9119	34.38
0.022016	2.596	0.91 .63	$35 \cdot 04$
0.032097	2.645	0.9203	35.64
0.042638	2.695	0.9250	$36 \cdot 22$
$P_{2 \infty}$	$=100 \cdot 0$	c.c. $; P_{\mathbf{E}}=19 \cdot 1$ c.c. $;$	
$P_{2 \infty}$	$-P_{\mathbf{E}}=80 \cdot 9$ c.c. $; \mu=1.81$.		

In carbon disulphide at 0°.

$0 \cdot 000000$	$2 \cdot 695$	$1 \cdot 2925$	21.26
0.011142	$2 \cdot 779$	$1 \cdot 2955$	21.98
$0 \cdot 021769$	$2 \cdot 858$	$1 \cdot 2978$	$22 \cdot 65$
$0 \cdot 032732$	$2 \cdot 941$	$1 \cdot 3005$	$23 \cdot 32$
$0 \cdot 042396$	$3 \cdot 015$	$1 \cdot 3027$	23.91
$\begin{aligned} & P_{2 \infty}=85 \cdot 6 \mathrm{c.c} . ; P_{\mathrm{E}}=19 \cdot 1 \mathrm{c} . \mathrm{c} . ; \\ & P_{2 \infty}-P_{\mathrm{E}}=66.5 \mathrm{c.c} . ; \mu=1 \cdot 71 . \end{aligned}$			

1
$89 \cdot 7$
$88 \cdot 7$
$88 \cdot 4$
$88 \cdot 1$
-
$98 \cdot 6$
$96 \cdot 4$
$95 \cdot 6$
$93 \cdot 4$

$$
f_{2} . \quad \epsilon . \quad D_{4^{\circ}}^{t^{\circ}} \quad P_{12}, \text { c.c. } \quad P_{2}, \text { c.c. }
$$

In cyclohexane at 20°.

0°.				
$0 \cdot 000000$	$2 \cdot 021$	$0 \cdot 7783$	$27 \cdot 45$	
0.011198	$2 \cdot 064$	$0 \cdot 7833$	28.21	$95 \cdot 8$
$0 \cdot 022499$	2-107	$0 \cdot 7884$	28.95	$94 \cdot 6$
$0 \cdot 033081$	2.148	$0 \cdot 7936$	29.63	$\mathbf{9 3 \cdot 4}$
$0 \cdot 044380$	2-193	$0 \cdot 7985$	$30 \cdot 37$	$93 \cdot 3$
$\begin{aligned} & P_{2 \infty}=96.5 \text { c.c. } ; P_{\mathbf{E}}=19 \cdot 1 \text { c.c.; } \\ & P_{2 \infty}-P_{\mathbf{E}}=77 \cdot 4 \text { c.c. } ; \mu=1.91 . \end{aligned}$				

In carbon tetrachloride at 40°.

0.000000	$2 \cdot 196$	$1 \cdot 5556$	$28 \cdot 19$	-
0.011285	$2 \cdot 242$	$1 \cdot 5549$	28.88	$88 \cdot 7$
0.020309	$2 \cdot 279$	$1 \cdot 5542$	$2 \cdot 41$	$88 \cdot 1$
0.032703	$2 \cdot 330$	1.5529	$30 \cdot 13$	$87 \cdot 6$
$0 \cdot 043769$	$2 \cdot 376$	$1 \cdot 5522$	$30 \cdot 77$	$87 \cdot 0$
$P_{2 \infty}$	$=89 \cdot 7$ c.c. $; P_{\mathbf{E}}=19 \cdot 1$ c.c. $;$			

$P_{2 \infty}=89 \cdot 7$ c.c. $; P_{\mathrm{E}}=19 \cdot 1$ c.c. $;$
$P_{2 \infty}^{2 \infty}-P_{\mathbf{E}}=70.6$ c.c. $; \mu=1.89$.
In carbon tetrachloride at 0°.

	$0 \cdot 000000$	$2 \cdot 277$	$1 \cdot 6327$	$28 \cdot 13$	
$94 \cdot 5$	0.011285	$2 \cdot 335$	$1 \cdot 6319$	28.94	$99 \cdot 4$
94•1	$0 \cdot 020309$	$2 \cdot 380$	$1 \cdot 6310$	$29 \cdot 54$	$97 \cdot 5$
92.7	0.032703	$2 \cdot 444$	$1 \cdot 6298$	$30 \cdot 37$	96.7
91.9	$0 \cdot 043769$	$2 \cdot 503$	$1 \cdot 6293$	$31 \cdot 11$	96.2
$\begin{aligned} & P_{2 \infty}=99 \cdot 3 \text { c.c.; } P_{\mathbf{E}}=19 \cdot 1 \text { c.c.; } \\ & P_{2 \infty}-P_{\mathbf{E}}=80 \cdot 2 \text { c.c. } ; \mu=1 \cdot 88 . \end{aligned}$					

In benzene at 20°.

		$0 \cdot 000000$	$2 \cdot 280$	$0 \cdot 8787$	$26 \cdot 57$
$89 \cdot 1$	$0 \cdot 010361$	$2 \cdot 332$	$0 \cdot 8838$	$27 \cdot 28$	$94 \cdot 3$
$88 \cdot 3$	$0 \cdot 020265$	$2 \cdot 381$	$0 \cdot 8884$	$27 \cdot 93$	$93 \cdot 3$
$87 \cdot 5$	$0 \cdot 029903$	$2 \cdot 430$	$0 \cdot 8933$	$28 \cdot 55$	$92 \cdot 6$
$88 \cdot 0$	$0 \cdot 039828$	$2 \cdot 482$	$0 \cdot 8983$	$29 \cdot 19$	$92 \cdot 3$

$P_{2 \infty}=94.9$ c.c. $; P_{\mathrm{E}}=19.1$ c.c. $;$
$P_{2 \infty}-P_{\mathrm{E}}=75.8$ c.c. $; \mu=1.89$.
In toluene at 40°.

$0 \cdot 000000$	$2 \cdot 338$	$0 \cdot 8480$	33.49
$0 \cdot 011197$	$2 \cdot 379$	$0 \cdot 8527$	$34 \cdot 07$
$0 \cdot 022016$	$2 \cdot 418$	$0 \cdot 8570$	$34 \cdot 62$
$0 \cdot 032097$	$2 \cdot 455$	$0 \cdot 8612$	$35 \cdot 12$
$0 \cdot 042638$	$2 \cdot 493$	$0 \cdot 8657$	$35 \cdot 62$
$\begin{aligned} & P_{2 \alpha} \\ & P_{2 \alpha}^{2 \alpha} \end{aligned}$	$\begin{aligned} & =86 \cdot 8 \\ & -P_{\mathrm{E}} \end{aligned}$	$\begin{aligned} & \text { c. } ; P_{\mathrm{E}} \\ & 67 \cdot 7 \mathrm{c} . \mathrm{c} \end{aligned}$	$\begin{aligned} & 19 \cdot 1 \mathrm{c} . \\ & \mu=1 . \end{aligned}$

In toluene at 0°.

$0 \cdot 000000$	2.431	$0 \cdot 8848$	$33 \cdot 61$
$0 \cdot 011197$	$2 \cdot 482$	$0 \cdot 8897$	$34 \cdot 29$
$0 \cdot 022016$	$2 \cdot 532$	$0 \cdot 8944$	34.94
$0 \cdot 032097$	$2 \cdot 577$	$0 \cdot 8988$	$35 \cdot 50$
$0 \cdot 042638$	$2 \cdot 627$	$0 \cdot 9034$	36.12
$P_{2 \alpha}^{P_{2 \alpha}}$	$\begin{aligned} & =95 . \\ & -P_{\mathrm{E}} \end{aligned}$	$\begin{array}{r} ; P_{\mathrm{E}} \\ 6 \cdot 1 \mathrm{c} . \mathrm{c} \end{array}$	$\begin{aligned} & 19 \cdot 1 \mathrm{c} \\ & \ell=1 \end{aligned}$

In carbon disulphide at 20°.

0.000000	$2 \cdot 642$	$1 \cdot 2632$	$21 \cdot 33$	
0.011142	$2 \cdot 716$	$1 \cdot 2657$	21.99	$80 \cdot 6$
$0 \cdot 021769$	$2 \cdot 787$	$1 \cdot 2681$	$22 \cdot 62$	$80 \cdot 6$
$0 \cdot 032732$	$2 \cdot 861$	$1 \cdot 2705$	$23 \cdot 26$	$80 \cdot 4$
$0 \cdot 042396$	$2 \cdot 927$	$1 \cdot 2728$	$23 \cdot 82$	$80 \cdot 0$
$\begin{aligned} & P_{2 \infty}=81 \cdot 0 \text { c.c. } ; P_{\mathbf{E}}=19 \cdot 1 \text { c.c. } ; \\ & P_{2 \infty}-P_{\mathbf{E}}=61.9 \text { c.c. } ; \mu=1.71 . \end{aligned}$				

$P_{2 \infty}^{2 \infty}-P_{\mathbf{E}}=61 \cdot 9$ c.c.; $\mu=1.71$.
In carbon disulphide at -22.9°.

0.000000	$2 \cdot 755$	$1 \cdot 3260$	$21 \cdot 19$	-
0.011142	$2 \cdot 849$	$1 \cdot 3301$	$21 \cdot 93$	$87 \cdot 7$
0.021769	$2 \cdot 938$	$1 \cdot 3335$	$22 \cdot 62$	$86 \cdot 7$
0.032732	3.032	1.3365	$23 \cdot 33$	$86 \cdot 5$
0.042396	$3 \cdot 113$	1.3394	23.92	$85 \cdot 6$

$P_{2 \infty}=89 \cdot 5$ c.c. $; P_{\mathrm{E}}=19 \cdot 1$ c.c. $;$
$P_{2 \infty}-P_{\mathrm{E}}=70 \cdot 4$ c.c. $; \mu=1 \cdot 69$.

Summary.
The apparent moments and polarisations of bromobenzene and ethyl bromide in six solvents have been measured over a temperature range. It has been found that all the values of the moments in solution are lower than the vapour results and that the polarisation at each temperature decreases with increase of the dielectric constant of the solvent. The figures have been examined by the solvent-effect equations and it is concluded that the agreement between the calculated values and the experimental vapour determinations is on the whole fairly satisfactory.

We thank the Department of Scientific and Industrial Research and the Chemical Society for grants.

